Remainder In Tagalog

Remainder In Tagalog

280 ÷ 1321 remainder 821 remainder 921 remainder 721 remainder 10​

Daftar Isi

1. 280 ÷ 1321 remainder 821 remainder 921 remainder 721 remainder 10​


Answer:

21 Remainder 7

Step-by-step explanation:

pa brainliest po


2. find the remainder ׳+3ײ+5×+4find the remainder 5×⁴+9׳-4find the remainder ×⁴+6×+1find the remainder 2׳+3ײ+2×+7find the remainder ×⁴+6×+1find the remainder ׳+5ײ-8find the remainder ×⁴-3ײ+3×+4​


Step-by-step explanation:

find the remainder ×⁴-3ײ+3×+4

Answer:

sorry walang akong masagot


3. is a remainder of 0 the same as no remainder


Answer:

Remainder. When one term (the "dividend") is divided by another term (the "divisor"), the result is a "quotient" and a "remainder". ... 0 is the remainder. Since the remainder is zero, both 2 and 3 are factors of 6.

Step-by-step explanation:

Pa brainliest po pls


4. FIND THE REMAINDER USING REMAINDER TTHEOREM, SHOW SOLUTION


5. p(x)= x³+x²-5x-6

p(2)= (2)³+(2)²-5(2)-6

p(2)= 8+4-10-6

p(2)= 12-16

p(2)= -4

6. p(x)= x⁴+5x³+11x²+25x+29

p(-3)= (-3)⁴+5(-3)³+11(-3)²+25(-3)+29

p(-3)= 81+5(-27)+11(9)-75+29

p(-3)= 81-135+99-75+29

p(-3)= -54+24+29

p(-3)= -30+29

p(-3)= -1

7. p(x)=x⁴+11x³+22x²+24x+12

p(-1)= (-1)⁴+11(-1)³+22(-1)²+24(-1)+12

p(-1)= 1+11(-1)+22(1)-24+12

p(-1)= 1-11+22-24+12

p(-1)= -10-2+12

p(-1)= -12+12

p(-1)= 0

8. p(b)= 6b⁴+12b³+22b²+13b+3

p(-3)= 6(-3)⁴+12(-3)³+22(-3)²+13(-3)+3

p(-3)= 6(81)+12(-27)+22(9)-39+3

p(-3)= 486-15+198-36

p(-3)= 471+162

p(-3)= 633

9. p(v)= 6v³+42v²-50v-20

p(-8)= 6(-8)³+42(-8)²-50(-8)-20

p(-8)= 6(-512)+42(64)-58-20

p(-8)= 3,072+2,688-78

p(-8)= 5,760-78

p(-8)= 5,682

10. p(x)= 4x³-9x²+8x+3

p(2)= 4(2)³-9(2)²+8(2)+3

p(2)= 4(8)-9(4)+16+3

p(2)= 32-36+19

p(2)= -4+19

p(2)= 15

Correct me If mali yung pagkakasolve ko thanks :) Sana makatulong yung sagot ko. GoodLuck!


5. Divided by 9 ,remainder 6 Divided by 4,remainder 1 Divided by 10,remainder 3 Who i am?


Answer:

you're Bhabyadrianne

Step-by-step explanation:

son/daughter of your mom and dad

Answer:

33

Step-by-step explanation:

33 divided by 9, remainder 6

33 divided by 4, remainder 1

33 divided by 10, remainder 3


6. 1. When the polynomial x 2x1-48-8 is divided by- *-1, the remainder is- 2. the remainder in-3, the remainder​


Answer:

kaya mo yan focus sa goal

Step-by-step explanation:

kaya mo yan wag ka papatalo


7. Find the remainder for each of the following using the remainder theorem​


Answer:

1. 2

2. –3

3. 125

4. 5

5. 2


8. Use the remainder theorem to find the remainder of the following ​


Step-by-step explanation:

sana makatulong

#Carryonlearning


9. use the remainder theorem to find the remainder


∆ '. c c c c c

The Remainder Theorem then points out the connection between division and multiplication. For instance, since 12 ÷ 3 = 4, then 4 × 3 = 12. If you get a remainder, you do the multiplication and then add the remainder back in. For instance, since 13 ÷ 5 = 2 R 3, then 13 = 5 × 2 + 3.


10. What is the quotient in 4 158 divided by 10? 2 points A. 415 remainder 3 B. 415 remainder 8 C. 416 remainder 9 D. 415 remainder 9 ​


Answer:

B. 415 remainder 8

Hope it helps!

Answer:

B. 415 remainder 8

Step-by-step explanation:

Hope it help

11. 748÷3 A. 248 remainder 2 B. 249 remainder 1 C. 249 D. 249 remainder 3


249

3/748

- 6

14

-12

28

-27

1

B. 249 remainder 1

Hello! :)

#BrainlySummerChallenge

Answer:

[tex]\boxed{249R1}[/tex]

249 remainder 1

Step-by-step explanation:

PEMDAS

parenthesis

exponent

multiply

divide

add

subtract

left/right

First, you divide numbers from left/right.

you divide into 7 by 3 which equal to get 2.

Subtract.

7-6=1

Then, bring down the next number.

14

divide 14 into 3 equal to 4.

4*3=12

subtract numbers from left/right.

14-12=2

bring down the next number.

28

divide 28 into 3 equal 9.

9*3=27

Subtract numbers.

28-27=1

249 remainder 1.

Make sure this answer should be have a "REMAINDER."

Hope this helps!

Thanks!

Have a nice day! :)

-Charlie


12. find the remainder using Remainder Theorem. ​


Answer:remainder =  

24

Explanation:

Given:  

7

x

3

+

40

x

2

+

22

x

35

x

+

1

The Remainder Theorem states that when you divide a polynomial  

f

(

x

)

by a linear factor  

(

x

a

)

, you will have a quotient function  

q

(

x

)

and a remainder.

The remainder  

=

f

(

a

)

. This remainder can be found using long division, synthetic division or the Remainder Theorem.

Long Division:

       

           

7

x

2

+

33

x

11

−−−−−−−−−−−−−−−−−−−−

 

quotient function

x

+

1

7

x

3

+

40

x

2

+

22

x

35

         

7

x

3

+

7

x

2

−−−−−−−−−

 

                     

33

x

2

+

22

x

 

                     

33

x

2

+

33

x

−−−−−−−−−−

 

                               

11

x

35

                               

11

x

11

−−−−−−−−−−

 

                                           

24

remainder

Remainder Theorem:

linear factor:  

(

x

a

)

=

(

x

+

1

)

=

(

x

1

)

.

This means  

a

=

1

f

(

x

)

=

7

x

3

+

40

x

2

+

22

x

35

f

(

1

)

=

7

(

1

)

3

+

40

(

1

)

2

+

22

(

1

)

35

=

24

Remainder  

=

24:

pa Brainliest Po ty

Step-by-step explanation:


13. Which of the following represents the division algorithm? *a.Dividend = Quotient + Remainderb.Quotient = Dividend – Divisor + Remainderc.Quotient = Dividend x Divisor + Remainderd.Dividend = Divisor x Quotient + Remainder​


Answer:

C. Quotient = Dividend x Divisor + Remainder


14. 217÷19 A. 11 remainder 7 B. 11 remainder 8 C. 12 remainder 8


Answer: B. 11 remainder 8

Step-by-step explanation:

19 x 11 = 209 (too small)

19 x 12 = 228 (too big)

217 - 209 = 8

Answer:

B. 11 remainder 8

Step-by-step explanation:

So in the picture thats how you divide it

We will get the remainder when you cant divide it to the divisor which is 8

You cant divide 8 by 19 because you will get decimals

So for checking we will multiply

11 to 19 so

11 × 19 = 209

Then we will add the answer to the remainder which is 8 so

209 + 8 = 217 IT CORRECT

#BrainlySummerChallenge


15. 6706÷17 A. 394 remainder 4 B. 394 remainder 7 C. 394 remainder 8 D. 394


In Euclid Lemma,

6706÷17=(394×17)+8

Answer is 394 remainder 8


16. use the remainder theorem to find the remainder for each division.​


Answer:

A.

1.c

2.d

3.b

4.e

5.a

B.

1.remainder =12

2.remainder= 0

3.remainder= -6

Step-by-step explanation:

Tama Yan thanks me later


17. Remainder Theorem: 1. Given: Valve ofx: Remainder:


Answer:

1. Matatagpuan sa timog-silangang bahagi ng Asya

2. Dalawang uri: Kapuluang bahagi ng Timog-Silangang Asya Kontinenteng bahagi ng Timog-Silangang Asya

3. Bago pa man dumating ang mga Espanyol ay may mayaman na kultura na ang mga sinaunang pilipino.

4. Panahon ng Espanyol Umusbong ang iba’t- ibang uri ng mga panitikan.

5. Doctrina Christiana – Pinakaunang libro na inilimbag.

6. Isang one-act play na galing sa Espanyol, pero umusbong noong Panahon ng Amerikano.

7. Panahon ng Amerikano Nagkaroon ng pagbabago tungkol sa edukasyon.

8. Nagkaroon ng libreng pag-aaral sa mga paaralan. Nagtayo ng mga unibersidad

9. Nagturo ng mga aralin sa ma Pilipino Guro mula sa Amerika.

10. Panahon ng Pananakop ng Hapon 1942-1945 Pangunahing Wika: Tagalog

11. Tanaga Isang uri ng panitikan na umusbong noong panahon ng hapon na sinasabi na malalim sa wikang Filipino.

12. Panahon ng Kalayaan at Restorasyon 1946-1970

13. Nabuhay muli ang mga gawa halaw mula sa mga gawa ng mga Amerikano.

14. Myanmar → Isa sa mga bansa kabilang sa Kontinenteng Timog-Silangang Asya.

15. Kyauksa → Pinakaunang akda na ginawa sa Myanmar.

16. Myazedi Inscription → 1113 A.D.; isa sa mga pinakaunang gawa sa Myanmar.

17. Ang unang printing press ay dumating sa Myanmar noong 1800s.

18. Noong sinakop sila ng mga British, gumawa din sila ng mga akda na sa lengguwaheng Ingles.

19. Ang panitikan sa Indonesia ay naimpluwensiyahan ng mga iba’t-ibang bansa, tulad ng China, India, Persia, etc.

20. Nagmula sa Malay Literature.


18. Determine the remainder using the remainder theorem.


The remainder in that polynomial equation is 0

19. If 743 is divided by 4, what is the result?A.) 185 remainder 3B.) 185 remainder 4C.) 184 remainder 2D.) 183 remainder 3​


Answer:

185.75

Step-by-step explanation:

Sana Po Maka tulong


20. Assessment 3Remainder TheoremDirection: Use the Remainder Theorem to solve for the remainder R in each of thefollowingRemainder:1. (2x5 + x3 – 4x – 8) = (2x – 1)Remainder:2. (3x2+ 2x3 + x – 4) = (x + 1)Remainder:3. (x3 - 2x4 + x - 4x2) = (x + 2)AHA​


Ayan sagot sa no.1 sana po makatulong:)


21. Find the remainder x5 - 243 ; x - 3Remainder = __​


Answer:

49

Step-by-step explanation:

yan ang sagot thank you narin


22. A. Find the remainder using Remainder Theorem.​


Answer:

sa no.1 yan na solution sana po makatulong:)


23. Which shows the pattern when we divide multiples of 3 by 2? A. The remainder is always 1. B. The remainder is odd. C. The remainder is even. D. The remainder is less than 3.​


Answer:

A. The Remainder Is Always


24. Which polynomial gives a remainder of zero when divided by 3x-2?(use the remainder remainder theorem)​


ANSWER: C po pramise btw grade 5 po ako and the answer is C


25. Activity 6: Remainder Theorem Use the Remainder Theorem lo find the remainder R In each of the following​


Answer:

Remainder Theorem

1. x+2 =0

x = -2

f(x)= x^4 - x^3 + 2

f(-2) = (-2)^4 - (-2)^3 + 2

= 26

2. x-3 =0

x = 3

f(x) = x^3 - 2x^2 + x + 6

f(3) = (3)^3 - 2(3)^2 + 3 + 6

= 18

3. x-2 =0

x = 2

f(x) = x^4 - 3x^3 + 4x^2 - 6x + 4

f(2) = (2)^4 - 3(2)^3 + 4(2)^2 - 6(2) + 4

= 0

4. x+2 =0

x = -2

f(x) = x^4 - 16x^3 + 18x^2 - 128

f(-2) = (-2)^4 - 16(-2)^3 + 18(-2)^2 - 128

= 88

5. x-4 =0

x = 4

f(x) = 3x^2 + 5x^3 - 8

f(4) = 3(4)^2 + 5(4)^3 - 8

= 360

I can't show you the synthetic division. It's too long to type in here. But i hope you find this useful.


26. Use the remainder Theorem to find the remainder (R) in the following​


Step-by-step explanation:

15 + r78 = 4(a-5)

(1 ÷ r78 + 4)


27. Tayahin A. Ibigay ang hinihinging sagot sa bawat bilang. 1) 35+ 4 2) 72+5 3) 95+30 4) 126+8 5) 594+ 19= remainder remainder remainder remainder e remainder​


[tex]\huge{\mathbb{ANSWER :}}[/tex]

1. 35 + 4 = 39

2. 72 + 5 = 77

3. 95 + 30 = 125

4. 126 + 8 = 134

5. 594 + 19 = 613

Note: (Long Addition is on the attached pictures so you can understand it clearly of how i got the answer.)

#Azami_squad

(/^_^)/


28. divided by 9 remainder of 6 divided by 4 remainder of 1 Divided by 10 remainder of 3 who am i?​


Answer:

33

Step-by-step explanation:

33÷9=3r6

33÷4=8r1

33÷10=3r3

iwan ko kong tama


29. Activity 6: Remainder Theorem Use the Remainder Theorem to find the remainder R in each of the following. ​


✒️REMAINDER THEOREM

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]

Use the Remainder Theorem to find the remainder R in each of the following.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWERS}:} [/tex]

[tex] \qquad\Large\rm 6) \:\: 47 [/tex]

[tex] \qquad\Large\rm 7) \:\: \text - 12[/tex]

[tex] \qquad\Large\rm 8) \:\: \frac{907}{16} [/tex]

[tex] \qquad\Large\rm 9) \:\: \frac{40}{27} [/tex]

[tex] \qquad\Large\rm 10) \:\: \frac{259}{25} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTIONS}:} [/tex]

» Express the given polynomial as a function P(x). Let x equal to zero then substitute it to the given polynomial to find the remainder.

No. 6:

[tex]P(x) = {x}^{2} - 3x + 7 \quad ; \quad x = \text - 5 [/tex]

[tex]P( \text - 5) = ( \text - 5)^{2} - 3( \text - 5) + 7 [/tex]

[tex]P( \text - 5) = 25 + 15 + 7 [/tex]

[tex]P( \text - 5) = 47[/tex]

[tex] \therefore [/tex] The remainder after dividing polynomial into (x + 5) is 47.

[tex] \rm [/tex]

No. 7:

[tex]P(x) = {2x}^{3} - {10x}^{2} + x - 5\quad ; \quad x = 1 [/tex]

[tex]P(1) = 2(1)^{3} -10(1)^{2} + 1 - 5[/tex]

[tex]P(1) = 2 -10 + 1 - 5[/tex]

[tex]P(1) = \text - 12[/tex]

[tex] \therefore [/tex] The remainder after dividing polynomial into (x - 1) is -12.

[tex] \rm [/tex]

No. 8:

[tex]P(x) = {x}^{4} - {x}^{3} + 2\quad ; \quad x = \text - \frac{5}{2} [/tex]

[tex]P \big( \text - \frac{5}{2} \big) = \big( \text - \frac{5}{2} \big)^{4} - \big( \text - \frac{5}{2} \big) ^{3} + 2[/tex]

[tex]P \big( \text - \frac{5}{2} \big) = \frac{625}{16} + \frac{125}{8} + 2[/tex]

[tex]P \big( \text - \frac{5}{2} \big) = \frac{875}{16} + 2[/tex]

[tex]P \big( \text - \frac{5}{2} \big) = \frac{907}{16}[/tex]

[tex] \therefore [/tex] The remainder after dividing polynomial into (2x + 5) is 907/16.

[tex] \rm [/tex]

No. 9:

[tex]P(x) = x^{3} - x^{2} - 8x - 4\quad ; \quad x = \text - \frac{2}{3} [/tex]

[tex]P \big( \text - \frac{2}{3} \big) = \big( \text - \frac{2}{3} \big)^{3} - \big( \text - \frac{2}{3} \big)^{2} - 8 \big(\text - \frac{2}{3} \big) - 4[/tex]

[tex]P \big( \text - \frac{2}{3} \big) = \text - \frac{8}{27} + \frac{4}{9} - 8 \big(\text - \frac{2}{3} \big) - 4[/tex]

[tex]P \big( \text - \frac{2}{3} \big) = \text - \frac{8}{27} + \frac{4}{9} + \frac{16}{3} - 4[/tex]

[tex]P \big( \text - \frac{2}{3} \big) = \frac{148}{27} - 4[/tex]

[tex]P \big( \text - \frac{2}{3} \big) = \frac{40}{27}[/tex]

[tex] \therefore [/tex] The remainder after dividing polynomial into (3x + 2) is 40/27.

[tex] \rm [/tex]

No. 10:

[tex]P(x) = {x}^{2} - 8x + 7 \quad ; \quad x = \text - \frac{2}{5} [/tex]

[tex]P \big( \text - \frac{2}{5} \big) = \big( \text - \frac{2}{5} \big)^{2} - 8\big( \text - \frac{2}{5} \big) + 7[/tex]

[tex]P \big( \text - \frac{2}{5} \big) = \frac{4}{25} - 8\big( \text - \frac{2}{5} \big) + 7[/tex]

[tex]P \big( \text - \frac{2}{5} \big) = \frac{4}{25} + \frac{16}{5} + 7[/tex]

[tex]P \big( \text - \frac{2}{5} \big) = \frac{84}{25} + 7[/tex]

[tex]P \big( \text - \frac{2}{5} \big) = \frac{259}{25}[/tex]

[tex] \therefore [/tex] The remainder after dividing polynomial into (5x + 2) is 259/25.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

I HOPE THIS HELPS :)


30. find the remainder using the remainder theorem.​


[tex]\large\color{orange}{{\underline{\bold{ Remainder \: of \: theorem }}}}[/tex]

[tex]\small\color{black}{{\underline{\bold{5.) {x}^{3} + {x}^{2} - 5x - 6 \ \: at }}}} \: x = 2 \\ {(2)}^{3} + {(2)}^{2} - 5(2) - 6 \\8 + 4 - 10 - 6 \\ \small\color{black}{{{\boxed{\tt\red{} \:\:\:\:\:\:\:\:\:remainder:-4\:\:\:\: }}}}[/tex]

[tex]\small\color{black}{{\underline{\bold{ 6.) \: {x}^{4} + {5x}^{3} + {11x}^{2} + 25x + 29 }}}} \\ \: x = - 3 \\ { - 3}^{4} + {5( - 3)}^{3} + {11( - 3)}^{2} + 25( - 3) + 29 \\ \small\color{black}{{{\boxed{\tt\red{} \:\:\:\:\:\:\:\:\:remainder:-1\:\:\:\: }}}}[/tex]

[tex]\small\color{black}{{\underline{\bold{7.) \: {x}^{4} + {11x}^{3} + {22x}^{2} + 24x + 12 }}}} \\ at \: x = - 1 \\ 1 + 11 ( - 1) + 22(1) - 24 + 12 \\ 1 - 11 + 22 - 24 + 12 \\ \small\color{black}{{{\boxed{\tt\red{} \:\:\:\:\:\:\:\:\:remainder:0\:\:\:\: }}}}[/tex]

[tex]\small\color{black}{{\underline{\bold{ 8.){6b}^{4} + {12b}^{3} + {22}^{2} + 13b + 3 }}}} \\ \:b = - 3 \\ {6( - 3)}^{4} + {12( - 3)}^{3} + {22( - 3)}^{2} + 13( - 3) + 3 \\ 486 - 324 + 198 - 39 + 3 \\ \small\color{black}{{{\boxed{\tt\red{} \:\:\:\:\:\:\:\:\:remainder:324\:\:\:\: }}}}[/tex]


Video Terkait

Kategori math