280 ÷ 1321 remainder 821 remainder 921 remainder 721 remainder 10
1. 280 ÷ 1321 remainder 821 remainder 921 remainder 721 remainder 10
Answer:
21 Remainder 7
Step-by-step explanation:
pa brainliest po
2. find the remainder ׳+3ײ+5×+4find the remainder 5×⁴+9׳-4find the remainder ×⁴+6×+1find the remainder 2׳+3ײ+2×+7find the remainder ×⁴+6×+1find the remainder ׳+5ײ-8find the remainder ×⁴-3ײ+3×+4
Step-by-step explanation:
find the remainder ×⁴-3ײ+3×+4
Answer:
sorry walang akong masagot
3. is a remainder of 0 the same as no remainder
Answer:
Remainder. When one term (the "dividend") is divided by another term (the "divisor"), the result is a "quotient" and a "remainder". ... 0 is the remainder. Since the remainder is zero, both 2 and 3 are factors of 6.
Step-by-step explanation:
Pa brainliest po pls
4. FIND THE REMAINDER USING REMAINDER TTHEOREM, SHOW SOLUTION
5. p(x)= x³+x²-5x-6
p(2)= (2)³+(2)²-5(2)-6
p(2)= 8+4-10-6
p(2)= 12-16
p(2)= -4
6. p(x)= x⁴+5x³+11x²+25x+29
p(-3)= (-3)⁴+5(-3)³+11(-3)²+25(-3)+29
p(-3)= 81+5(-27)+11(9)-75+29
p(-3)= 81-135+99-75+29
p(-3)= -54+24+29
p(-3)= -30+29
p(-3)= -1
7. p(x)=x⁴+11x³+22x²+24x+12
p(-1)= (-1)⁴+11(-1)³+22(-1)²+24(-1)+12
p(-1)= 1+11(-1)+22(1)-24+12
p(-1)= 1-11+22-24+12
p(-1)= -10-2+12
p(-1)= -12+12
p(-1)= 0
8. p(b)= 6b⁴+12b³+22b²+13b+3
p(-3)= 6(-3)⁴+12(-3)³+22(-3)²+13(-3)+3
p(-3)= 6(81)+12(-27)+22(9)-39+3
p(-3)= 486-15+198-36
p(-3)= 471+162
p(-3)= 633
9. p(v)= 6v³+42v²-50v-20
p(-8)= 6(-8)³+42(-8)²-50(-8)-20
p(-8)= 6(-512)+42(64)-58-20
p(-8)= 3,072+2,688-78
p(-8)= 5,760-78
p(-8)= 5,682
10. p(x)= 4x³-9x²+8x+3
p(2)= 4(2)³-9(2)²+8(2)+3
p(2)= 4(8)-9(4)+16+3
p(2)= 32-36+19
p(2)= -4+19
p(2)= 15
Correct me If mali yung pagkakasolve ko thanks :) Sana makatulong yung sagot ko. GoodLuck!
5. Divided by 9 ,remainder 6 Divided by 4,remainder 1 Divided by 10,remainder 3 Who i am?
Answer:
you're Bhabyadrianne
Step-by-step explanation:
son/daughter of your mom and dad
Answer:
33
Step-by-step explanation:
33 divided by 9, remainder 6
33 divided by 4, remainder 1
33 divided by 10, remainder 3
6. 1. When the polynomial x 2x1-48-8 is divided by- *-1, the remainder is- 2. the remainder in-3, the remainder
Answer:
kaya mo yan focus sa goal
Step-by-step explanation:
kaya mo yan wag ka papatalo
7. Find the remainder for each of the following using the remainder theorem
Answer:
1. 2
2. –3
3. 125
4. 5
5. 2
8. Use the remainder theorem to find the remainder of the following
Step-by-step explanation:
sana makatulong
#Carryonlearning
9. use the remainder theorem to find the remainder
∆ '. c c c c c
The Remainder Theorem then points out the connection between division and multiplication. For instance, since 12 ÷ 3 = 4, then 4 × 3 = 12. If you get a remainder, you do the multiplication and then add the remainder back in. For instance, since 13 ÷ 5 = 2 R 3, then 13 = 5 × 2 + 3.
10. What is the quotient in 4 158 divided by 10? 2 points A. 415 remainder 3 B. 415 remainder 8 C. 416 remainder 9 D. 415 remainder 9
Answer:
B. 415 remainder 8
Hope it helps!
Answer:
B. 415 remainder 8Step-by-step explanation:
Hope it help11. 748÷3 A. 248 remainder 2 B. 249 remainder 1 C. 249 D. 249 remainder 3
249
3/748
- 6
14
-12
28
-27
1
B. 249 remainder 1
Hello! :)
#BrainlySummerChallenge
Answer:
[tex]\boxed{249R1}[/tex]
249 remainder 1Step-by-step explanation:
PEMDAS
parenthesis
exponent
multiply
divide
add
subtract
left/right
First, you divide numbers from left/right.
you divide into 7 by 3 which equal to get 2.
Subtract.
7-6=1
Then, bring down the next number.
14
divide 14 into 3 equal to 4.
4*3=12
subtract numbers from left/right.
14-12=2
bring down the next number.
28
divide 28 into 3 equal 9.
9*3=27
Subtract numbers.
28-27=1
249 remainder 1.
Make sure this answer should be have a "REMAINDER."
Hope this helps!
Thanks!
Have a nice day! :)
-Charlie
12. find the remainder using Remainder Theorem.
Answer:remainder =
−
24
Explanation:
Given:
7
x
3
+
40
x
2
+
22
x
−
35
x
+
1
The Remainder Theorem states that when you divide a polynomial
f
(
x
)
by a linear factor
(
x
−
a
)
, you will have a quotient function
q
(
x
)
and a remainder.
The remainder
=
f
(
a
)
. This remainder can be found using long division, synthetic division or the Remainder Theorem.
Long Division:
7
x
2
+
33
x
−
11
−−−−−−−−−−−−−−−−−−−−
←
quotient function
x
+
1
∣
7
x
3
+
40
x
2
+
22
x
−
35
7
x
3
+
7
x
2
−−−−−−−−−
33
x
2
+
22
x
33
x
2
+
33
x
−−−−−−−−−−
−
11
x
−
35
−
11
x
−
11
−−−−−−−−−−
−
24
←
remainder
Remainder Theorem:
linear factor:
(
x
−
a
)
=
(
x
+
1
)
=
(
x
−
−
1
)
.
This means
a
=
−
1
f
(
x
)
=
7
x
3
+
40
x
2
+
22
x
−
35
f
(
−
1
)
=
7
(
−
1
)
3
+
40
(
−
1
)
2
+
22
(
−
1
)
−
35
=
−
24
Remainder
=
−
24:
pa Brainliest Po ty
Step-by-step explanation:
13. Which of the following represents the division algorithm? *a.Dividend = Quotient + Remainderb.Quotient = Dividend – Divisor + Remainderc.Quotient = Dividend x Divisor + Remainderd.Dividend = Divisor x Quotient + Remainder
Answer:
C. Quotient = Dividend x Divisor + Remainder
14. 217÷19 A. 11 remainder 7 B. 11 remainder 8 C. 12 remainder 8
Answer: B. 11 remainder 8
Step-by-step explanation:
19 x 11 = 209 (too small)
19 x 12 = 228 (too big)
217 - 209 = 8
Answer:
B. 11 remainder 8
Step-by-step explanation:
So in the picture thats how you divide it
We will get the remainder when you cant divide it to the divisor which is 8
You cant divide 8 by 19 because you will get decimals
So for checking we will multiply
11 to 19 so
11 × 19 = 209
Then we will add the answer to the remainder which is 8 so
209 + 8 = 217 IT CORRECT
#BrainlySummerChallenge
15. 6706÷17 A. 394 remainder 4 B. 394 remainder 7 C. 394 remainder 8 D. 394
In Euclid Lemma,
6706÷17=(394×17)+8
Answer is 394 remainder 8
16. use the remainder theorem to find the remainder for each division.
Answer:
A.
1.c
2.d
3.b
4.e
5.a
B.
1.remainder =12
2.remainder= 0
3.remainder= -6
Step-by-step explanation:
Tama Yan thanks me later
17. Remainder Theorem: 1. Given: Valve ofx: Remainder:
Answer:
1. Matatagpuan sa timog-silangang bahagi ng Asya
2. Dalawang uri: Kapuluang bahagi ng Timog-Silangang Asya Kontinenteng bahagi ng Timog-Silangang Asya
3. Bago pa man dumating ang mga Espanyol ay may mayaman na kultura na ang mga sinaunang pilipino.
4. Panahon ng Espanyol Umusbong ang iba’t- ibang uri ng mga panitikan.
5. Doctrina Christiana – Pinakaunang libro na inilimbag.
6. Isang one-act play na galing sa Espanyol, pero umusbong noong Panahon ng Amerikano.
7. Panahon ng Amerikano Nagkaroon ng pagbabago tungkol sa edukasyon.
8. Nagkaroon ng libreng pag-aaral sa mga paaralan. Nagtayo ng mga unibersidad
9. Nagturo ng mga aralin sa ma Pilipino Guro mula sa Amerika.
10. Panahon ng Pananakop ng Hapon 1942-1945 Pangunahing Wika: Tagalog
11. Tanaga Isang uri ng panitikan na umusbong noong panahon ng hapon na sinasabi na malalim sa wikang Filipino.
12. Panahon ng Kalayaan at Restorasyon 1946-1970
13. Nabuhay muli ang mga gawa halaw mula sa mga gawa ng mga Amerikano.
14. Myanmar → Isa sa mga bansa kabilang sa Kontinenteng Timog-Silangang Asya.
15. Kyauksa → Pinakaunang akda na ginawa sa Myanmar.
16. Myazedi Inscription → 1113 A.D.; isa sa mga pinakaunang gawa sa Myanmar.
17. Ang unang printing press ay dumating sa Myanmar noong 1800s.
18. Noong sinakop sila ng mga British, gumawa din sila ng mga akda na sa lengguwaheng Ingles.
19. Ang panitikan sa Indonesia ay naimpluwensiyahan ng mga iba’t-ibang bansa, tulad ng China, India, Persia, etc.
20. Nagmula sa Malay Literature.
18. Determine the remainder using the remainder theorem.
The remainder in that polynomial equation is 0
19. If 743 is divided by 4, what is the result?A.) 185 remainder 3B.) 185 remainder 4C.) 184 remainder 2D.) 183 remainder 3
Answer:
185.75
Step-by-step explanation:
Sana Po Maka tulong
20. Assessment 3Remainder TheoremDirection: Use the Remainder Theorem to solve for the remainder R in each of thefollowingRemainder:1. (2x5 + x3 – 4x – 8) = (2x – 1)Remainder:2. (3x2+ 2x3 + x – 4) = (x + 1)Remainder:3. (x3 - 2x4 + x - 4x2) = (x + 2)AHA
Ayan sagot sa no.1 sana po makatulong:)
21. Find the remainder x5 - 243 ; x - 3Remainder = __
Answer:
49
Step-by-step explanation:
yan ang sagot thank you narin
22. A. Find the remainder using Remainder Theorem.
Answer:
sa no.1 yan na solution sana po makatulong:)
23. Which shows the pattern when we divide multiples of 3 by 2? A. The remainder is always 1. B. The remainder is odd. C. The remainder is even. D. The remainder is less than 3.
Answer:
A. The Remainder Is Always
24. Which polynomial gives a remainder of zero when divided by 3x-2?(use the remainder remainder theorem)
ANSWER: C po pramise btw grade 5 po ako and the answer is C
25. Activity 6: Remainder Theorem Use the Remainder Theorem lo find the remainder R In each of the following
Answer:
Remainder Theorem
1. x+2 =0
x = -2
f(x)= x^4 - x^3 + 2
f(-2) = (-2)^4 - (-2)^3 + 2
= 26
2. x-3 =0
x = 3
f(x) = x^3 - 2x^2 + x + 6
f(3) = (3)^3 - 2(3)^2 + 3 + 6
= 18
3. x-2 =0
x = 2
f(x) = x^4 - 3x^3 + 4x^2 - 6x + 4
f(2) = (2)^4 - 3(2)^3 + 4(2)^2 - 6(2) + 4
= 0
4. x+2 =0
x = -2
f(x) = x^4 - 16x^3 + 18x^2 - 128
f(-2) = (-2)^4 - 16(-2)^3 + 18(-2)^2 - 128
= 88
5. x-4 =0
x = 4
f(x) = 3x^2 + 5x^3 - 8
f(4) = 3(4)^2 + 5(4)^3 - 8
= 360
I can't show you the synthetic division. It's too long to type in here. But i hope you find this useful.
26. Use the remainder Theorem to find the remainder (R) in the following
Step-by-step explanation:
15 + r78 = 4(a-5)
(1 ÷ r78 + 4)
27. Tayahin A. Ibigay ang hinihinging sagot sa bawat bilang. 1) 35+ 4 2) 72+5 3) 95+30 4) 126+8 5) 594+ 19= remainder remainder remainder remainder e remainder
[tex]\huge{\mathbb{ANSWER :}}[/tex]
1. 35 + 4 = 39
2. 72 + 5 = 77
3. 95 + 30 = 125
4. 126 + 8 = 134
5. 594 + 19 = 613
Note: (Long Addition is on the attached pictures so you can understand it clearly of how i got the answer.)
#Azami_squad
(/^_^)/
28. divided by 9 remainder of 6 divided by 4 remainder of 1 Divided by 10 remainder of 3 who am i?
Answer:
33
Step-by-step explanation:
33÷9=3r6
33÷4=8r1
33÷10=3r3
iwan ko kong tama
29. Activity 6: Remainder Theorem Use the Remainder Theorem to find the remainder R in each of the following.
✒️REMAINDER THEOREM
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]
Use the Remainder Theorem to find the remainder R in each of the following.[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWERS}:} [/tex]
[tex] \qquad\Large\rm 6) \:\: 47 [/tex]
[tex] \qquad\Large\rm 7) \:\: \text - 12[/tex]
[tex] \qquad\Large\rm 8) \:\: \frac{907}{16} [/tex]
[tex] \qquad\Large\rm 9) \:\: \frac{40}{27} [/tex]
[tex] \qquad\Large\rm 10) \:\: \frac{259}{25} [/tex]
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTIONS}:} [/tex]
» Express the given polynomial as a function P(x). Let x equal to zero then substitute it to the given polynomial to find the remainder.
No. 6:[tex]P(x) = {x}^{2} - 3x + 7 \quad ; \quad x = \text - 5 [/tex][tex]P( \text - 5) = ( \text - 5)^{2} - 3( \text - 5) + 7 [/tex][tex]P( \text - 5) = 25 + 15 + 7 [/tex][tex]P( \text - 5) = 47[/tex][tex] \therefore [/tex] The remainder after dividing polynomial into (x + 5) is 47.
[tex] \rm [/tex]
No. 7:[tex]P(x) = {2x}^{3} - {10x}^{2} + x - 5\quad ; \quad x = 1 [/tex][tex]P(1) = 2(1)^{3} -10(1)^{2} + 1 - 5[/tex][tex]P(1) = 2 -10 + 1 - 5[/tex][tex]P(1) = \text - 12[/tex][tex] \therefore [/tex] The remainder after dividing polynomial into (x - 1) is -12.
[tex] \rm [/tex]
No. 8:[tex]P(x) = {x}^{4} - {x}^{3} + 2\quad ; \quad x = \text - \frac{5}{2} [/tex][tex]P \big( \text - \frac{5}{2} \big) = \big( \text - \frac{5}{2} \big)^{4} - \big( \text - \frac{5}{2} \big) ^{3} + 2[/tex][tex]P \big( \text - \frac{5}{2} \big) = \frac{625}{16} + \frac{125}{8} + 2[/tex][tex]P \big( \text - \frac{5}{2} \big) = \frac{875}{16} + 2[/tex][tex]P \big( \text - \frac{5}{2} \big) = \frac{907}{16}[/tex][tex] \therefore [/tex] The remainder after dividing polynomial into (2x + 5) is 907/16.
[tex] \rm [/tex]
No. 9:[tex]P(x) = x^{3} - x^{2} - 8x - 4\quad ; \quad x = \text - \frac{2}{3} [/tex][tex]P \big( \text - \frac{2}{3} \big) = \big( \text - \frac{2}{3} \big)^{3} - \big( \text - \frac{2}{3} \big)^{2} - 8 \big(\text - \frac{2}{3} \big) - 4[/tex][tex]P \big( \text - \frac{2}{3} \big) = \text - \frac{8}{27} + \frac{4}{9} - 8 \big(\text - \frac{2}{3} \big) - 4[/tex][tex]P \big( \text - \frac{2}{3} \big) = \text - \frac{8}{27} + \frac{4}{9} + \frac{16}{3} - 4[/tex][tex]P \big( \text - \frac{2}{3} \big) = \frac{148}{27} - 4[/tex][tex]P \big( \text - \frac{2}{3} \big) = \frac{40}{27}[/tex][tex] \therefore [/tex] The remainder after dividing polynomial into (3x + 2) is 40/27.
[tex] \rm [/tex]
No. 10:[tex]P(x) = {x}^{2} - 8x + 7 \quad ; \quad x = \text - \frac{2}{5} [/tex][tex]P \big( \text - \frac{2}{5} \big) = \big( \text - \frac{2}{5} \big)^{2} - 8\big( \text - \frac{2}{5} \big) + 7[/tex][tex]P \big( \text - \frac{2}{5} \big) = \frac{4}{25} - 8\big( \text - \frac{2}{5} \big) + 7[/tex][tex]P \big( \text - \frac{2}{5} \big) = \frac{4}{25} + \frac{16}{5} + 7[/tex][tex]P \big( \text - \frac{2}{5} \big) = \frac{84}{25} + 7[/tex][tex]P \big( \text - \frac{2}{5} \big) = \frac{259}{25}[/tex][tex] \therefore [/tex] The remainder after dividing polynomial into (5x + 2) is 259/25.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
I HOPE THIS HELPS :)
30. find the remainder using the remainder theorem.
[tex]\large\color{orange}{{\underline{\bold{ Remainder \: of \: theorem }}}}[/tex]
[tex]\small\color{black}{{\underline{\bold{5.) {x}^{3} + {x}^{2} - 5x - 6 \ \: at }}}} \: x = 2 \\ {(2)}^{3} + {(2)}^{2} - 5(2) - 6 \\8 + 4 - 10 - 6 \\ \small\color{black}{{{\boxed{\tt\red{} \:\:\:\:\:\:\:\:\:remainder:-4\:\:\:\: }}}}[/tex]
[tex]\small\color{black}{{\underline{\bold{ 6.) \: {x}^{4} + {5x}^{3} + {11x}^{2} + 25x + 29 }}}} \\ \: x = - 3 \\ { - 3}^{4} + {5( - 3)}^{3} + {11( - 3)}^{2} + 25( - 3) + 29 \\ \small\color{black}{{{\boxed{\tt\red{} \:\:\:\:\:\:\:\:\:remainder:-1\:\:\:\: }}}}[/tex]
[tex]\small\color{black}{{\underline{\bold{7.) \: {x}^{4} + {11x}^{3} + {22x}^{2} + 24x + 12 }}}} \\ at \: x = - 1 \\ 1 + 11 ( - 1) + 22(1) - 24 + 12 \\ 1 - 11 + 22 - 24 + 12 \\ \small\color{black}{{{\boxed{\tt\red{} \:\:\:\:\:\:\:\:\:remainder:0\:\:\:\: }}}}[/tex]
[tex]\small\color{black}{{\underline{\bold{ 8.){6b}^{4} + {12b}^{3} + {22}^{2} + 13b + 3 }}}} \\ \:b = - 3 \\ {6( - 3)}^{4} + {12( - 3)}^{3} + {22( - 3)}^{2} + 13( - 3) + 3 \\ 486 - 324 + 198 - 39 + 3 \\ \small\color{black}{{{\boxed{\tt\red{} \:\:\:\:\:\:\:\:\:remainder:324\:\:\:\: }}}}[/tex]